Optimized explicit Runge-Kutta schemes for the spectral difference method applied to wave propagation problems
نویسندگان
چکیده
Explicit Runge–Kutta schemes with large stable step sizes are developed for integration of high order spectral difference spatial discretizations on quadrilateral grids. The new schemes permit an effective time step that is substantially larger than the maximum admissible time step of standard explicit Runge–Kutta schemes available in literature. Furthermore, they have a small principal error norm and admit a low-storage implementation. The advantages of the new schemes are demonstrated through application to the Euler equations and the linearized Euler equations.
منابع مشابه
Nonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملComparison of High-Accuracy Finite-Difference Methods for Linear Wave Propagation
This paper analyzes a number of high-order and optimized finite-difference methods for numerically simulating the propagation and scattering of linear waves, such as electromagnetic, acoustic, and elastic waves. The spatial operators analyzed include compact schemes, noncompact schemes, schemes on staggered grids, and schemes which are optimized to produce specific characteristics. The time-mar...
متن کامل2-stage explicit total variation diminishing preserving Runge-Kutta methods
In this paper, we investigate the total variation diminishing property for a class of 2-stage explicit Rung-Kutta methods of order two (RK2) when applied to the numerical solution of special nonlinear initial value problems (IVPs) for (ODEs). Schemes preserving the essential physical property of diminishing total variation are of great importance in practice. Such schemes are free of spurious o...
متن کاملOptimized Low Dispersion and Low Dissipation Runge- Kutta Algorithms in Computational Aeroacoustics
A new explicit fourth-order six-stage Runge-Kutta scheme with low dispersion and low dissipation properties is developed. This new Runge-Kutta scheme is shown to be more efficient in terms of dispersion and dissipation properties than existing algorithms such as Runge-Kutta temporal schemes developed by Hu et al. (1996), Mead and Renaut (1999), Tselios and Simos (2005). We perform a spectral an...
متن کاملAn overview of high-order finite difference schemes for computational aeroacoustics
One of the problems in computational aeroacoustics (CAA) is the large disparity between the length and time scales of the flow field, which may be the source of aerodynamically generated noise, and the ones of the resulting acoustic field. This is the main reason why numerical schemes, used to calculate the timeand space-derivatives, should exhibit a low dispersion and dissipation error. This p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Scientific Computing
دوره 35 شماره
صفحات -
تاریخ انتشار 2013